Locally Mixed Symmetric Spaces

نویسندگان

چکیده

This chapter introduces the notion which is main interest in this book and responsible for title. Locally mixed symmetric spaces are a very natural construction enrich of locally spaces, studied Chap. 2. While there pair data entering, \((G_{\mathbb Q}, {\varGamma })\), where \(G_{\mathbb Q}\) semisimple \({\mathbb Q}\)-group such that \(X=G_{\mathbb R}/K\) space non-compact type maximal compact subgroup \(K\subset G_{\mathbb R}\) \( }\subset an arithmetic group, now triple defining situation: },{\boldsymbol{\rho }})\), \({\boldsymbol{\rho }}:G_{\mathbb Q}\longrightarrow GL(V)\) faithful rational representation (not necessarily defined over Q}\)).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric zeta-functions of locally symmetric spaces

The theory of geometric zeta functions for locally symmetric spaces as initialized by Selberg and continued by numerous mathematicians is generalized to the case of higher rank spaces. We show analytic continuation, describe the divisor in terms of tangential cohomology and in terms of group cohomology which generalizes the Patterson conjecture. We also extend the range of zeta functions in con...

متن کامل

Equivariant Torsion of Locally Symmetric Spaces

In this paper we express the equivariant torsion of an Hermitian locally symmetric space in terms of geometrical data from closed geodesics and their Poincaré maps. For a Hermitian locally symmetric space Y and a holomorphic isometry g we define a zeta function Z(s) for <(s) 0, whose definition involves closed geodesics and their Poincaré maps. We show that Z extends meromorphically to the enti...

متن کامل

Metric compacti cations of locally symmetric spaces

We introduce hyperbolic and asymptotic compactiications of metric spaces and apply them to locally symmetric spaces ?nX. We show that the reductive Borel{Serre compactiication ?nX RBS is hyperbolic and, as a corollary, get a result of Borel, and Kobayashi{Ochiai that the Baily{Borel compactiication ?nX BB is hyperbolic. We prove that the hyperbolic reduction of the toroidal compactiications ?nX...

متن کامل

L-invariants of locally symmetric spaces

Let X = G/K be a Riemannian symmetric space of the noncompact type, Γ ⊂ G a discrete, torsion-free, cocompact subgroup, and let Y = Γ\X be the corresponding locally symmetric space. In this paper we explain how the Harish-Chandra Plancherel Theorem for L(G) and results on (g,K)-cohomology can be used in order to compute the L-Betti numbers, the Novikov-Shubin invariants, and the L-torsion of Y ...

متن کامل

Transference principles and locally symmetric spaces

We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces Tn = SO(n)\SL(n,R)/SL(n,Z) with n ≥ 2, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space Tn and the wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer monographs in mathematics

سال: 2021

ISSN: ['1439-7382', '2196-9922']

DOI: https://doi.org/10.1007/978-3-030-69804-1_3